Chemical Reaction Engineering

Lecture 6

Classification of reactions

- Phases involved:
 - **Homogeneous** reaction reaction that occur in one phase
 - Heterogeneous reaction reaction that involves more than one phase and usually occurs at the interface between the phases (e.g. heterogeneous catalysis)
- Equilibrium position
 - Reversible reaction reaction that can proceed in either direction depending on the concentration of reagents and products
 - Irreversible reaction reaction that at given conditions can be assumed to proceed in one direction only (i.e. reaction equilibrium involves much smaller concentration of the reagents)

Elementary reactions

- Kinetics of chemical reactions determined by the elementary reaction steps.
- **Molecularity** of an elementary reaction is the number of molecules coming together to react in one reaction step (e.g. **uni-molecular**, **bimolecular**, **termolecular**)
- Probability of meeting 3 molecules is very small, so uni-molecular and bimolecular reaction are the only two to consider

Elementary reactions

Uni-molecular: first order in the reactant

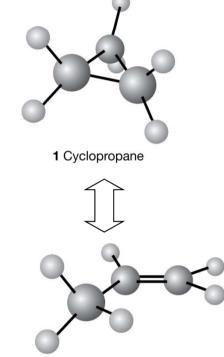
$$A \longrightarrow P \qquad \frac{d[A]}{dt} = -k[A]$$

Bimolecular: first order in the reactant

$$A + B \longrightarrow P \quad \frac{d[A]}{dt} = -k[A][B]$$

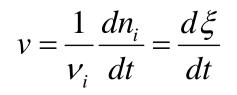
Proportional to collision rate

 $H + Br_2 \longrightarrow HBr + Br$



2 Propene

! rate of disappearance of individual components can be calculated as:



Relative Rates of Reaction

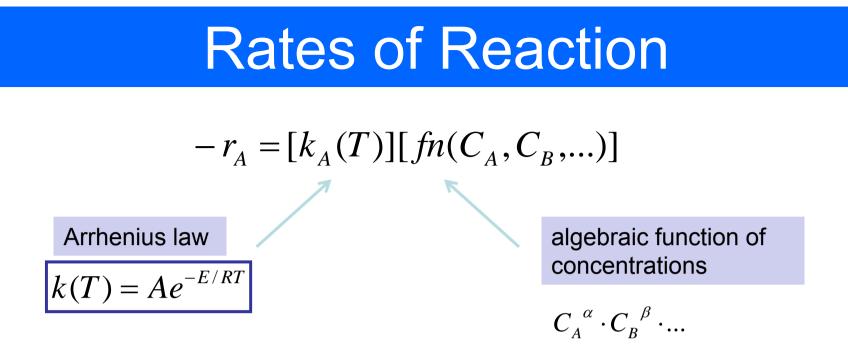
$$aA + bB \longrightarrow cC + dD$$

 if we are interested in species A we can use A as the basis of calculation and define the reaction rate with respect to A

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D \qquad \qquad \frac{-r_A}{a} = \frac{-r_B}{b} = \frac{r_C}{c} = \frac{r_D}{d}$$

- Reaction rate is not a constant, it depends
 - on concentration of the reagents
 - on the temperature
 - on the total pressure in the reactions involving gas phase
 - ionic strength and solvent in liquid state
 - presence of a catalyst

$$-r_{A} = [k_{A}(T)][fn(C_{A}, C_{B}, ...)]$$



- reaction order: $n = \alpha + \beta + ...$
- reaction rate is found experimentally, data on frequency factor (A), activation energy (E) and the order of the reaction can be found in relevant handbooks.
- units of the reaction rate constant

$$[k] = \frac{(Concentration)^{1-n}}{time}$$

Non-Elementary Reaction rates

• The reaction rate dependence on the concentration and temperature will become more complicated when a reaction comprising **several elementary steps** is considered (incl. catalytic and reversible reactions)

Reversible reaction

• Let's consider a reaction of diphenyl formation

$$2C_6H_6 \xleftarrow{k_1 \ k_{-1}} C_{12}H_{10} + H_2$$

• rate of change for benzene

$$\frac{d[C_6H_6]}{dt} = r_B = -2k_1C_B^2 + 2k_{-1}C_DC_{H_2}$$

Equilibrium constant

$$\frac{d[C_6H_6]}{dt} = r_B = -2k_1C_B^2 + 2k_{-1}C_DC_{H_2}$$

• noticing that the equilibrium constant: $K_{c_{x}} = k_1/k_{-1}$

$$-r_{B} = 2k_{1}\left(C_{B}^{2} - \frac{C_{D}C_{H_{2}}}{K_{c}}\right)$$

in terms of concentration

• reaction rates in terms of other reagents:

$$\frac{r_D}{1} = \frac{-r_B}{2} = k_1 \left(C_B^2 - \frac{C_D C_{H_2}}{K_c} \right)$$

Reaction rate

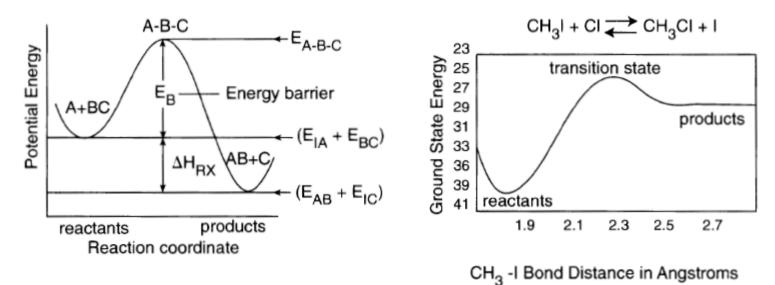
Below, we will consider only the concentration and temperature dependence of the reaction rate

Dependence on the concentration can be calculated knowing reaction mechanism, as before Г $d[C_H_1]$ C C

$$\frac{l[C_6H_6]}{dt} = r_B = -2k_1 \left[C_B^2 + \frac{C_D C_{H_2}}{K_C} \right]$$

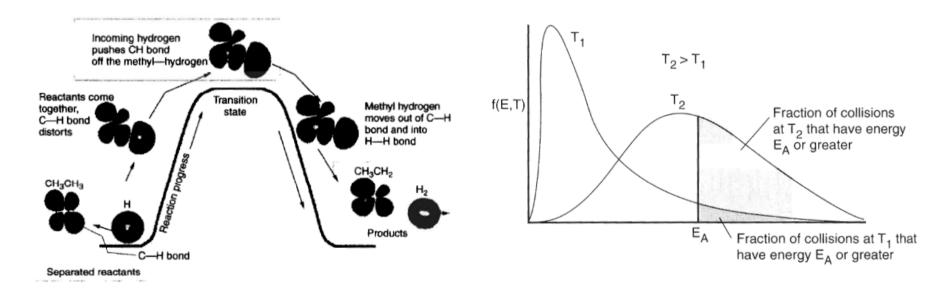
Temperature dependence: **Arrhenius equation**

$$k(T) = Ae^{-E/RT}$$



Reaction rate

 From the collision theory, only molecules with the energy higher than the activation energy can react:



The usual "rule of thumb that the reaction rate doubles with every 10°C is not always true:

$$k(T_1)/k(T_2) = e^{-E/R \cdot \left(\frac{1}{T_1} - \frac{1}{T_2}\right)}$$

Summary of the Reactor design equations

In the previous lecture we found design equations for various reactors:

	Differential Form	Algebraic Form	Integral Form
Batch	$N_{\rm A0}\frac{dX}{dt} = -r_{\rm A}V$		$t = N_{\rm A0} \int_0^X \frac{dX}{-r_{\rm A}V}$
CSTR		$V = \frac{F_{A0}(X_{out} - X_{in})}{(-r_A)_{out}}$	
PFR	$F_{\rm A0}\frac{dX}{dV} = -r_{\rm A}$		$V = F_{\rm A0} \int_{X_{\rm un}}^{X_{\rm out}} \frac{dX}{-r_{\rm A}}$
PBR	$F_{\rm A0}\frac{dX}{dW} = -r'_{\rm A}$		$W = F_{\rm A0} \int_{X_{\rm in}}^{X_{\rm out}} \frac{dX}{-r'_{\rm A}}$

To solve them we need to find disappearence rate as a function of conversion:

$$-r_A = g(X)$$

Relative Rates of Reaction

 $aA + bB \longrightarrow cC + dD$

 if we are interested in species A we can define A as the basis of calculation

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

- conversion: $X_A = \frac{\text{Moles of A reacted}}{\text{Moles of A fed}}$
- Let's see how we can relate it to the reaction rate for various types of reactors.

Batch reactor

$$A + \frac{b}{a}B \longrightarrow \frac{c}{a}C + \frac{d}{a}D$$

- conversion: $X_A = \frac{\text{Moles of A reacted}}{\text{Moles of A fed}}$
- number of moles A left after conversion:

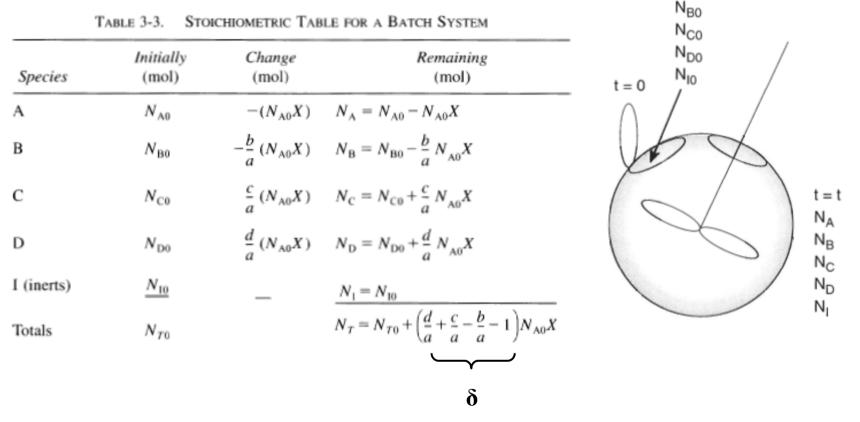
$$N_{A} = N_{A0} - N_{A0} X = N_{A0} (1 - X) \qquad C_{A} = \frac{N_{A}}{V} = \frac{N_{A0} (1 - X)}{V}$$

• number of moles B left after conversion:

$$N_{B} = N_{B0} - N_{A0} \frac{b}{a} X \qquad C_{B} = \frac{N_{B}}{V} = \frac{N_{B0} - (b/a)N_{A0}X}{V} = \frac{N_{A0} (\Theta_{B} - (b/a)X)}{V}$$

Batch reactors

 For every component in the reactor we can write after conversion X is achieved:



δ - the total molar increase per mole of A reacted $N_T = N_{T0} + \delta \cdot N_{A0} \cdot X$

Batch reactor

• Now, if we know the **number of moles of every component** we can calculate **concentration** as a function of conversion.

$$C_{A} = \frac{N_{A}}{V} = \frac{N_{A0}(1-X)}{V}$$

$$C_{B} = \frac{N_{B}}{V} = \frac{N_{B0} - b/a N_{A0} X}{V} = \frac{N_{A0}(\Theta_{B} - (b/a)X)}{V}$$

$$C_{C} = \frac{N_{C}}{V} = \frac{N_{A0}(\Theta_{C} + (c/a)X)}{V}$$

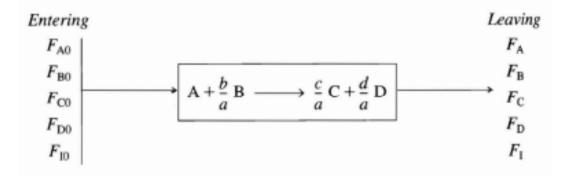
$$C_{D} = \frac{N_{D}}{V} = \frac{N_{A0}(\Theta_{D} + (d/a)X)}{V}$$

- However, generally V can be a function of X as well...
- In a constant volume reactor (e.g. batch reactor, liquid reactor): $C_{+} = C_{+} (1 - X);$

$$C_{B} = C_{A0} (\Theta_{B} - (b/a)X), \text{ etc.}$$

Flow reactors

 Equations for flow reactors are the same with number of moles *N* changed for flow rate *F* [mol/s].



Flow reactors

• Stoichiometric table for a flow system

Species	Feed Rate to Reactor (mol/time)	Change within Reactor (mol/time)	Effluent Rate from Reactor (mol/time)
А	$F_{\rm A0}$	$-F_{A0}X$	$F_{\rm A} = F_{\rm A0}(1-X)$
В	$F_{\rm B0} = \Theta_{\rm B} F_{\rm A0}$	$-\frac{b}{a}F_{A0}X$	$F_{\rm B} = F_{\rm A0} \left(\Theta_{\rm B} - \frac{b}{a} X \right)$
С	$F_{\rm C0} = \Theta_{\rm C} F_{\rm A0}$	$\frac{c}{a} F_{A0} X$	$F_{\rm C} = F_{\rm A0} \left(\Theta_{\rm C} + \frac{c}{a} X \right)$
D	$F_{\rm D0} = \Theta_{\rm D} F_{\rm A0}$	$\frac{d}{a} F_{A0} X$	$F_{\rm D} = F_{\rm A0} \left(\Theta_{\rm D} + \frac{d}{a} X \right)$
Ι	$F_{10} = \Theta_1 F_{A0}$		$F_1 = F_{A0}\Theta_1$
	F_{T0}		$F_{T} = F_{T0} + \left(\frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1\right) F_{A0}X$
			$F_{T} = F_{T0} + \delta F_{A0} X$

Flow reactors

For a flow system a concentration at any point can be obtained from molar flow rate F and volumetric flow rate

$$C_A = \frac{F_A}{v} = \frac{moles/time}{liter/time}$$

• For reaction in liquids, the volume change is negligible (if no phase change occurred):

$$C_{A} = \frac{F_{A}}{v} = C_{A0} \left(1 - X \right) \qquad C_{B} = C_{A0} \left(\Theta_{B} - \frac{b}{a} X \right)$$

Reactions involving volume change

• In a gas phase reaction a molar flow rate might change as the reaction progresses

$$N_2 + 3H_2 \longrightarrow 2NH_3$$

4 moles 2 moles

 In a gas phase reaction a molar flow rate might change as the reaction progresses

Batch reactor with variable volume

• As such it would be a rare case (e.g. internal combustion engine), but a good model case:

$$PV = ZN_T RT$$

compressibility factor

• If we divide the gas equation at any moment in time by the one at moment zero:

$$V = V_0 \left(\frac{P_0}{P}\right) \left(\frac{T}{T_0}\right) \left(\frac{Z}{Z_0}\right) \left(\frac{N_T}{N_{T0}}\right)$$

$$\left(\frac{N_T}{N_{T0}}\right) = 1 + \left(\frac{N_{A0}}{N_{T0}}\right) \delta \cdot X = 1 + \varepsilon X$$

$$V = V_0 \left(\frac{P_0}{P}\right) \left(\frac{T}{T_0}\right) \left(1 + \varepsilon X\right)$$

function V=g(X)

Flow reactor with variable flow rate

 Using the gas equation we can derive the total concentration as:

total concentration:
$$C_T = \frac{F_T}{v} = \frac{P}{ZRT}$$
 at the entrance: $C_{T0} = \frac{F_{T0}}{v} = \frac{P_0}{Z_0RT_0}$
total volume rate: $v = v_0 \frac{F_T}{F_{T0}} \frac{P_0}{P} \frac{Z}{Z_0} \frac{T}{T_0}$

$$C_{j} = \frac{F_{j}}{v} = F_{j} / \left(v_{0} \frac{F_{T}}{F_{T0}} \frac{P_{0}}{P} \frac{Z}{Z_{0}} \frac{T}{T_{0}} \right) = C_{T0} \frac{F_{j}}{F_{T}} \frac{P}{P_{0}} \frac{Z_{0}}{Z} \frac{T_{0}}{T}$$
=1

Flow reactor with variable flow rate

• In a gas phase reaction a molar flow rate might change as the reaction progresses

$$v = v_0 \frac{F_T}{F_{T0}} \frac{P_0}{P} \frac{Z}{Z_0} \frac{T}{T_0}$$

$$V = v_0 \left(1 + y_{A0} \delta X\right) \frac{P_0}{P} \frac{T}{T_0} = v_0 \left(1 + \varepsilon X\right) \frac{P_0}{P} \frac{T}{T_0}$$

$$F_T = F_T + F_{A0} \cdot \delta \cdot X$$

$$C_j = \frac{F_{A0} \left(\Theta_j + v_j X\right)}{v_0 \left(1 + \varepsilon X\right) \frac{P_0}{P} \frac{T}{T_0}}$$

Example

- For reaction below calculate
 - equilibrium conversion in a constant batch reactor;
 - equilibrium conversion in a flow reactor;
 - assuming the reaction is elementary, express the rate of the reaction
 - plot Levenspil plot and determine CSTR volume for 80% conversion
- assume the feed is pure N_2O_4 at 340K and 202.6kPa. Concentration equilibrium constant: $K_c=0.1$ mol/l; $k_A=0.5$ min⁻¹.

$$N_2 O_4 \rightleftharpoons 2NO_2$$

1. Batch reactor

Species	Symbol	Initial	Change	Remaining
N_2O_4	А	N _{A0}	$-N_{A0}X$	$N_{\rm A} = N_{\rm A0}(1-X)$
NO_2	В	0	$+2N_{A0}X$	$N_{\rm B} = 2N_{\rm A0}X$
		$N_{T0} = N_{A0}$		$N_T = N_{T0} + N_{A0}X$

TABLE E3-6.1. STOICHIOMETRIC TABLE

equilibrium conversion:

--e

$$K_{C} = \frac{C_{Be}^{2}}{C_{Ae}} = \frac{4C_{A0}^{2}X_{e}^{2}}{C_{A0}(1-X_{e})} = \frac{4C_{A0}X_{e}^{2}}{1-X_{e}}$$
$$C_{A0} = \frac{y_{A0}P_{0}}{RT_{0}} = 0.071 \text{ mol/dm}^{3}.$$
$$X = 0.44$$

Example

2. Flow reactor

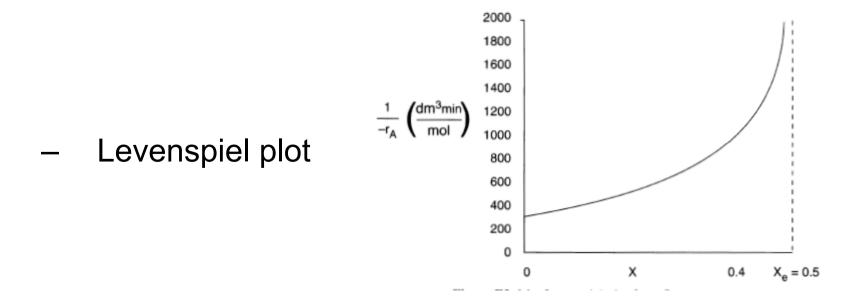
$$C_{A} = \frac{F_{A}}{v} = \frac{F_{A0} \left(1 - X\right)}{v_{0} \left(1 + \varepsilon X\right)} = \frac{C_{A0} \left(1 - X\right)}{1 + \varepsilon X}$$
$$C_{B} = \frac{C_{A0} X}{1 + \varepsilon X}$$

$$K_{C} = \frac{C_{Be}^{2}}{C_{Ae}} = \frac{4C_{A0}^{2}X_{e}^{2}}{C_{A0}(1 - X_{e})} = \frac{4C_{A0}X_{e}^{2}}{(1 - X_{e})(1 + \varepsilon X_{e})}$$

$$C_{A0} = \frac{y_{A0}P_0}{RT_0} = 0.071 \,\mathrm{mol/dm^3}.$$

$$X_{e} = 0.51$$

3. Rate laws $-r_{A} = k_{A} \left[C_{A} - \frac{C_{B}^{2}}{K_{C}} \right]$ $- \text{ Constant volume } -r_{A} = k_{A} \left[C_{A0} \left(1 - X \right) - \frac{4C_{A0}^{2} X^{2}}{K_{C}} \right]$ $- Flow \qquad -r_{A} = k_{A} \left[\frac{C_{A0} \left(1 - X \right)}{1 + \varepsilon X} - \frac{4C_{A0}^{2} X^{2}}{K_{C} \left(1 + \varepsilon X \right)^{2}} \right]$



Example

4. CSTR volume for X=0.4, feed of 3 mol/min

$$-r_{A} = k_{A} \left[C_{A0} \left(1 - X \right) - \frac{4C_{A0}^{2} X^{2}}{K_{C}} \right]$$

Constant volume

$$-r_{A}|_{X=0.4} = 7 \cdot 10^{-4}$$
$$V = \frac{F_{A0}X}{-r_{A}|_{X}} = 1714 \,\mathrm{dm}^{3}$$

- PFR – in the next lecture \odot

- Class: P3-15
- Home: P3-7, P3-13